

Sep 20 2022

Product datasheet.V1.0

概要描述

G60100F 是一款功率 100W 的 28V GaN 射频功率晶体管,专为频率高达 4GHz 的多种应用而设计。应用于其他频率时,无法保证其性能。同时其也是 G60060G 的双路径版本。

典型应用性能

测试条件: Vds = 28V, Idq = 600mA, 信号模式: CW , 测试频段: 1300MHz 测试于东科芯窄带测试架, 焊接装配

Frequency(MHz)	Gp (dB)	Psat (W)	Efficiency (%)
1300	19	110	70

产品特点

- 无线通信基础设施, 宽带放大器、EMC 测试、ISM 等;
- 提供出色的效率和线性化能力;
- 耐热增强型工业标准封装:
- 采用高可靠性金属化工艺;
- 优异的热稳定性以及坚固性;
- 符合有害物质限制(RoHS)指令 2002/95/EC 无铅。

加电顺序

打开设备

- 1、将 V_{GS}加至-5V
- 2、将 V_{DS} 打开至 28V
- 3、增加 V_{GS} ,直到出现 I_{DS} ,表明晶体管开启
- 4、打开驱动,输入功率

关闭设备

- 1、先关闭驱动
- 2、将 V_{DS} 降低至-5V, 过程中 I_{DS} 逐

渐降低至0mA

- 3、将 V_{DS} 降低至 0 V
- 4、关闭 V_{GS}

典型参数说明

表 1. 热特性参数

参数	符号	值	单位
热阻(管芯封装至法兰) 测试条件: TC= 85°C, TJ=200°C, DC Power Dissipation	$R_{ heta JC}$	1.25	°C/W

注意: $R_{\theta(IC\text{-}DC)\emptyset}$ 在直流条件下进行测试,与所有测试条件中的最高热阻值有关。在不同的射频操作条件下,如 CW、pulse 等信号,可能会有不同程度地降低。

表 2. 极限参数

参数	符号	值	单位
漏极电压	$V_{ m DSS}$	+150	Vdc
栅极电压	V_{GS}	-10, +2	Vdc
工作电压	V_{DD}	+40	Vdc
最大正向栅极电流	$I_{ m gmx}$	28.8	mA
储存温度范围	$\mathrm{T}_{\mathrm{stg}}$	-65 to +150	°C
封装工作温度	T_{C}	+150	°C
工作结温	T_{J}	+200	°C
功耗	$P_{ m diss}$	150	W

注意: 1、在最高结温下连续运行将影响 MTTF。

2、偏置条件还应满足以下表达式: Pdiss < (Tj-Tc)/RJC、Tc = Tcase。

表 3.电学特性参数(TC=25°,除非特殊注明)

	直流特性				
参数及符号	测试条件	最小值	典型值	最大值	单位
V _{(BR)DSS} 击穿电压	V_{GS} =-8 V 、 I_{DS} =28.8 m A	150			V
V _{GS(th)} 开启电压	V _{DS} =28V 、I _D =28.80mA		-2.7		V
V _{GS(Q)} 栅极静态电压	V_{DS} =28 V 、 I_{DS} =600mA		-2.3		V

注意: V_{GS(Q})--栅极静态电压: 数据来源于典型应用测试。

表 4. 典型应用参数 (TC = 25℃ 除非特殊注明)

参数及符号	测试条件	最小值	典型值	最大值	单位
Gp增益	基于东科芯宽带测试架		19		dB
Eff效率	(50ohm 系统)		70		%
Psat—饱和功率	$V_{DD} = 28 V dc$ $I_{DO} = 600 \text{ mA}$		110		W
IRL—回波损耗	Freq= 1300 MHz		-7		dB
VSWR驻波比	测试信号: CW		10:1		Ψ

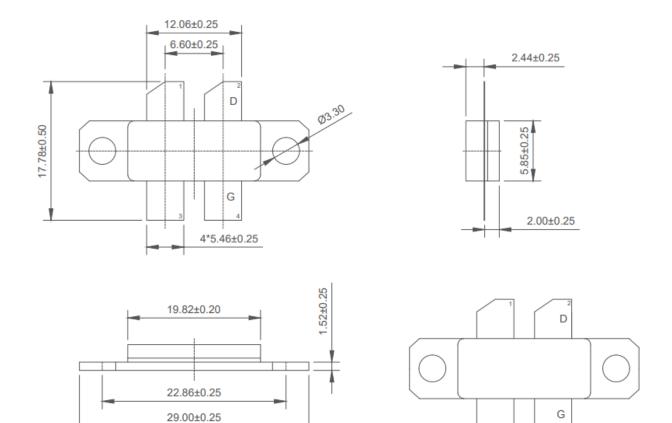
注意:测试时无晶体管损坏。

LOADPULL 数据(仅单边)

小信号测试性能

测试条件: Vds=28V, Idq=150mA, 信号: Pulse 100us, 10% duty cycle 增益定义为 Pout 处的压缩增益

G60100F	Freq (MHz)	V _{DD} (V)	Idq (mA)	Zsource (ohms)	Zload (ohms)	Pout (dBm)	Gain (dB)	Eff (%)
MXP	1500	28	150	1.0+j*1.0	3.8-j*2.3	49.85	18.61	77.76
MXE	1500	28	150	1.0+j*1.0	5.3+j*1.2	48.07	20.07	86.01
Trade Off	1500	28	150	1.0+j*1.0	4.4-j*0.6	49.35	19.83	83.01


G60100F	Freq (MHz)	V _{DD} (V)	Idq (mA)	Zsource (ohms)	Zload (ohms)	Pout (dBm)	Gain (dB)	Eff (%)
MXP	2000	28	150	0.9-j*1.0	3.1-j*3.4	49.50	16.19	77.73
MXE	2000	28	150	0.9-j*1.0	3.4-j*1.3	48.39	17.65	82.80
Trade Off	2000	28	150	0.9-j*1.0	3.4-j*2.1	49.00	17.16	81.37

G60100F	Freq (MHz)	V _{DD} (V)	Idq (mA)	Zsource (ohms)	Zload (ohms)	Pout (dBm)	Gain (dB)	Eff (%)
MXP	2500	28	150	1.7-j*4.2	3.7-j*3.1	49.33	13.74	76.66
MXE	2500	28	150	1.7-j*4.2	3.0-j*0.7	48.01	14.75	82.18
Trade Off	2500	28	150	1.7-j*4.2	3.1-j*1.6	48.83	14.36	79.69

G60100F	Freq (MHz)	V _{DD} (V)	Idq (mA)	Zsource (ohms)	Zload (ohms)	Pout (dBm)	Gain (dB)	Eff (%)
MXP	3000	28	150	1.9-j*6.3	3.2-j*5.3	49.22	12.30	75.56
MXE	3000	28	150	1.9-j*6.3	2.4-j*3.7	48.18	12.87	80.05
Trade Off	3000	28	150	1.9-j*6.3	2.7-j*4.2	48.72	12.78	79.14

封装尺寸图

注意: 所有尺寸均以毫米 (mm) 为单位。

版本修订记录

日期	版本	修订说明	备注
2022-09-20	1.0	发布初版数据手册	

注意事项

- (1) 本说明书中的内容,随着产品的改进,有可能不经过预告而更改。请客户及时到本公司网站下载更新 http://www.rfwatt.com/.
- (2) 请注意输入电压、输出电压、负载电流的使用条件,使 PA 内的功耗不超过封装的容许功耗。 更多频段测试数据请参考相应测试报告。