

L10005M

5W, 通用 LDMOS 射频功率晶体管

Apr 21 2022

Product datasheet.V1.0

概要描述

L10005M 是一款 5W 的高可靠性 LDMOS 射频功率晶体管,专为高频至 3.5GHz 的宽带商业和工业应用而设计。可支持 AB/B 类和 C 类中所有典型的调制格式,同时也可以支持线性或饱和的脉冲、CW 或其他调制信号操作。

典型应用性能

测试条件: Vds = 28 V, Idq = 50mA; 信号模式: Pulsed CW (20us, 10%) 测试于东科芯测试架, 焊接装配, 测试频段: 2500-2700MHz

Freq (MHz)	P1dB (dBm)	P1dB (W)	P1dB Eff(%)	P1dB Gain(dB)	P3dB (dBm)	P3dB (W)	P3dB Eff(%)
2500	38.85	7.7	56.9	17.72	39.57	9.1	59.5
2600	38.28	6.7	60.6	18.48	39.14	8.2	62.7
2700	37.38	5.5	55.9	18.36	38.44	7.0	59.2

产品特点

- 提供出色的效率和线性化能力;
- 内部集成 ESD 保护技术;
- 无铅,符合 RoHS 2.0 标准;
- 优异的热稳定性以及低热载流子注入(HCI)漂移;
- 采用支持宽正负栅极/漏极电压范围内运行,可用于改进 C 类工作性能。

应用

- 通用功率放大器
- L、S 波段功率放大器

典型参数说明

表 1. 热特性参数

参数	符号	值	单位
热阻(管芯封装至法兰) 测试条件:外壳温度 85℃、Tj=200℃ ,DC 直流测试	$R_{ heta JC}$	6.5	°C/W

表 2. 极限参数

参数	符号	值	单位
漏极电压	$ m V_{DSS}$	+65	Vdc
栅极电压	$ m V_{GS}$	-10 to +10	Vdc
工作电压	V_{DD}	+32	Vdc
储存温度范围	$\mathrm{T}_{\mathrm{stg}}$	-65 to +150	°C
封装工作温度	T_{C}	+150	°C
工作结温	T_{J}	+225	°C

注意: 在最高结温下连续运行将影响 MTTF。

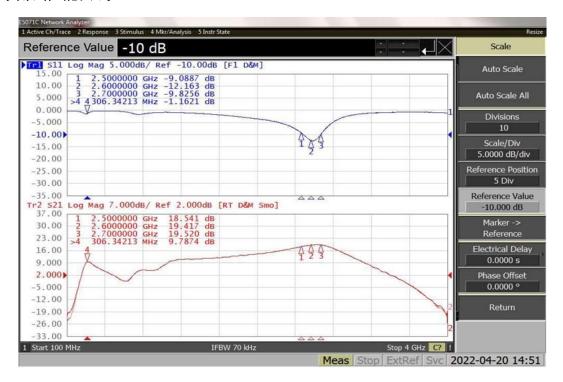
表 3. ESD 静电保护参数

测试模型	测试标准规范	级别	现象描述
人体放电模式 (HBM)	JESD22-A114E	Class 2	施加 2000V ESD 脉冲时通过, 但是施加 4000V ESD 脉冲时器件发生失效

表 4.坚固性特性参数

特性	测试条件	符号	最小值	典型值	最大值
失配负载能力	Freq= 2700MHz, V_{DD} =28V, I_{DQ} =50mA	VSWR		10:1	

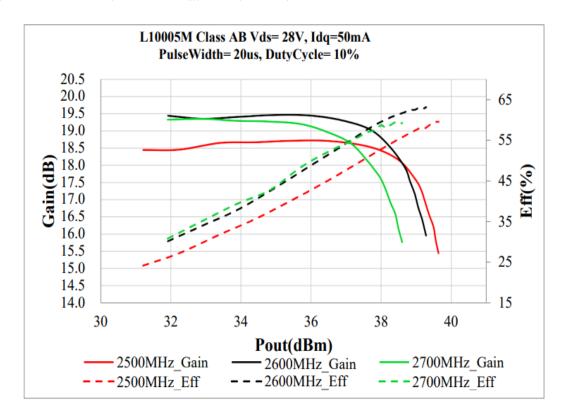
注意: VSWR 10:1 at 20W pulse CW Output Power (测试时无晶体管损坏)。

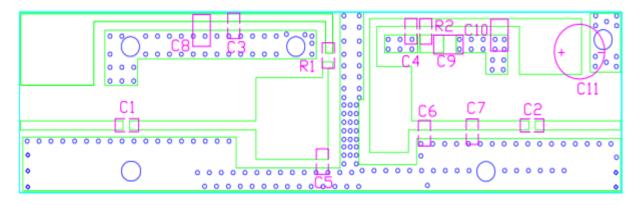

表 5. 电学特性参数(TC=25°, 除非特殊注明)

直流特性						
参数及符号	测试条件	最小值	典型值	最大值	单位	
V _{(BR)DSS} 击穿电压	$V_{DS} = 0 \text{ V}, I_{DS} = 500 \text{ uA}$	65	70		V	
I _{DSS} 漏极漏电电流	$V_{DS} = 50 \text{ V}$, $V_{GS} = 0 \text{ V}$			1	μΑ	
I _{DSS} 漏极漏电电流	$V_{DS}=28~V,~V_{GS}=0~V$			1	μΑ	
I _{GSS} 栅极漏电电流	$V_{DS} = 0 V$, $V_{GS} = 9 V$			1	μΑ	
V _{GS(th)} 开启电压	$V_{DS} = 28 \text{ V}, I_D = 600 \text{ uA}$		2		V	
V _{GS(Q)} 栅极静态电压	$V_{DS} = 28V$, $I_{D} = 50 \text{mA}$		2.7		V	
C _{ISS} 共源输入电容	$V_{GS} = 0 \text{ V}, V_{DS} = 28 \text{ V}, F = 1 \text{ MHz}$		8		pF	
Coss共源输出电容	$V_{GS} = 0 \text{ V}, V_{DS} = 28 \text{ V}, F = 1 \text{ MHz}$		3		pF	
C _{RSS} 共源反馈电容	$V_{GS} = 0 \text{ V}, V_{DS} = 28 \text{ V}, F = 1 \text{ MHz}$		0.2		pF	

注意: V_{GS(Q)}--栅极静态电压: 数据来源于典型应用测试。

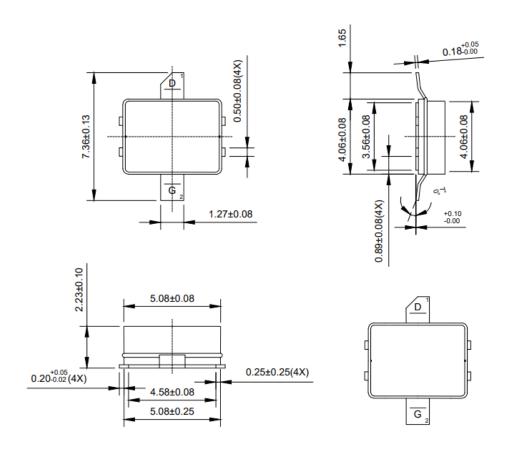
典型性能曲线


小信号测试性能曲线


典型性能曲线

测试条件: V_{DD} = 28Vdc, I_{DQ} = 50 mA, 信号: Pulse Width= 20us, Duty Cycle= 10% 功率增益和漏极效率作为脉冲输出功率的函数曲线

测试版图


2500-2700MHz((PCB: 20 Mils, RO4350B)

更多测试数据具体见测试报告。

封装尺寸图

注意: 所有尺寸均以毫米 (mm) 为单位。

版本修订记录

日期	版本	修订说明	备注
2022-04-21	1.0	发布初版数据手册	

注意事项

- (1) 本说明书中的内容,随着产品的改进,有可能不经过预告而更改。请客户及时到本公司网站下载更新 http://www.rfwatt.com/.
- (2) 请注意输入电压、输出电压、负载电流的使用条件,使 PA 内的功耗不超过封装的容许功耗。 更多频段测试数据请参考相应测试报告。